跳转至

必修一

1023 个字 预计阅读时间 3 分钟

基本不等式

\( \begin{cases} a^2 + b^2 \geq 2ab \\ \frac{(a+b)^2}{4} \geq ab \\ a+b \geq 2\sqrt{ab} \end{cases} \)

“调几算方”

调和平均数 \(\geq\) 几何平均数 \(\geq\) 算术平均数 \(\geq\) 平方根平均数

\( \frac{2}{\frac{1}{a}+\frac{1}{b}} \leq \sqrt{ab} \leq \frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}} \)

对数的运算法则

  1. 对数乘法法则: \(\log_a(bc) = \log_a b + \log_a c\)
  2. 对数除法法则: \(\log_a\frac{b}{c} = \log_a b - \log_a c\)
  3. 对数幂法则: \(\log_a b^c = c \log_a b\)
  4. 对数换底法则: \(\log_a b = \frac{\log_c b}{\log_c a}\)

推论:

  1. \(\log_a \frac{1}{M} = -\log_a M\)
  2. \(\log_a \sqrt[p]{M^n} = \frac{n}{p}\log_a M\)
  3. \(\log_a b = \frac{1}{\log_b a}\)
  4. \(a^{\log_b c} = c^{\log_b a}\)

三角函数

\(\sin^2\alpha+\cos^2\alpha=1\)

基础公式

  1. \(\sin(\theta + 2k\pi) = \sin \theta\)
  2. \(\cos(\theta + 2k\pi) = \cos \theta\)
  3. \(\tan(\theta + k\pi) = \tan \theta\)

其中,\(k \in \mathbb{Z}\)

三角函数诱导公式

  1. 第一组 :

    • \(\sin(\pi - \theta) = \sin \theta\)
    • \(\cos(\pi - \theta) = -\cos \theta\)
    • \(\tan(\pi - \theta) = -\tan \theta\)
  2. 第二组 :

    • \(\sin(\pi + \theta) = -\sin \theta\)
    • \(\cos(\pi + \theta) = -\cos \theta\)
    • \(\tan(\pi + \theta) = \tan \theta\)
  3. 第三组 :

    • \(\sin(2\pi - \theta) = -\sin \theta\)
    • \(\cos(2\pi - \theta) = \cos \theta\)
    • \(\tan(2\pi - \theta) = -\tan \theta\)
  4. 第四组 :

    • \(\sin(-\theta) = -\sin \theta\)
    • \(\cos(-\theta) = \cos \theta\)
    • \(\tan(-\theta) = -\tan \theta\)
  5. 第五组 :

    • \(\sin\left(\frac{\pi}{2} - \theta\right) = \cos \theta\)
    • \(\cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta\)
    • \(\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan \theta}\)
  6. 第六组 :

    • \(\sin\left(\frac{\pi}{2} + \theta\right) = \cos \theta\)
    • \(\cos\left(\frac{\pi}{2} + \theta\right) = -\sin \theta\)
    • \(\tan\left(\frac{\pi}{2} + \theta\right) = -\frac{1}{\tan \theta}\)

三角函数的性质

基本三角函数

函数 对称轴 对称中心 单调递增区间 单调递减区间 奇偶性 零点
\( y = \sin x \) \( x = k\pi + \frac{\pi}{2} \) \( (k\pi, 0) \) \( [2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}] \) \( [2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}] \) 奇函数 \( x = k\pi \)
\( y = \cos x \) \( x = k\pi \) \( \left(k\pi + \frac{\pi}{2}, 0\right) \) \( [2k\pi, 2k\pi + \pi] \) \( [2k\pi + \pi, 2k\pi + 2\pi] \) 偶函数 \( x = k\pi + \frac{\pi}{2} \)
\( y = \tan x \) \( (k\pi, 0) \) \( \left(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right) \) 奇函数 \( x = k\pi \)

其中,\( k \in \mathbb{Z} \)

奇偶性

三角函数形如 \( f(x) = A \sin(\omega x + \varphi) \) 的奇偶性:

  1. \( f(x) \) 为奇函数 \( \Leftrightarrow \) \( \varphi = k\pi \)
  2. \( f(x) \) 为偶函数 \( \Leftrightarrow \) \( \varphi = -\frac{\pi}{2} + k\pi \)

其中,\(k \in \mathbb{Z}\)

周期性

一般地,若函数 \( f(x) \) 的周期为 \(T\),则函数 \( y = f(\omega x) \) 的周期为 \( \frac{T}{|\omega|} \)

特殊地,函数 \( y = A \sin(\omega x + \varphi) \) \( y = A \cos(\omega x + \varphi) \) 的周期 \( T = \frac{2\pi}{|\omega|} \),函数 \( y = A \tan(\omega x + \varphi) \) 的周期 \( T = \frac{\pi}{|\omega|} \)

和差角公式

  1. \(\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta\)
  2. \(\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta\)
  3. \(\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}\)

和差化积与积化和差公式

  1. 两角和(或差)与两角积之间的关系

    • \(\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha - \beta)+\sin(\alpha + \beta)]\)
    • \(\cos\alpha\sin\beta = \frac{1}{2}[\sin(\alpha - \beta) - \sin(\alpha + \beta)]\)
    • \(\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha - \beta)+\cos(\alpha + \beta)]\)
    • \(\sin\alpha\sin\beta = -\frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]\)
  2. 两角积与两角和(或差)之间的关系

    • \(\sin\alpha \pm \sin\beta = 2\sin\frac{\alpha \pm \beta}{2}\cos\frac{\alpha \mp \beta}{2}\)
    • \(\cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}\)
    • \(\cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}\)

倍角公式和半角公式

  1. 倍角公式

    • \(\sin 2\alpha = 2\sin\alpha\cos\alpha\)
    • \(\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha\)
    • \(\tan 2\alpha = \frac{2\tan\alpha}{1 - \tan^2\alpha}\)
  2. 半角公式

    • \(\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1 - \cos\alpha}{2}}\)
    • \(\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1 + \cos\alpha}{2}}\)
    • \(\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} = \frac{1 - \cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1 + \cos\alpha}\)

    降幂公式

    • \(\sin^2\alpha = \frac{1 - \cos 2\alpha}{2}\)
    • \(\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}\)
    • \(\tan^2\alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}\)

万能公式

  1. \(\sin2\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha}\)
  2. \(\cos2\alpha = \frac{1-\tan^2\alpha}{1+\tan^2\alpha}\)
  3. \(\cos^4\alpha+\sin^4\alpha=\cos2\alpha\)
  4. \(\cos^4\alpha-\sin^4\alpha=1-\frac{1}{2}\sin^2 2\alpha=\frac{3}{4}+\frac{1}{4}\cos4\alpha\)

辅助角公式

\(a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2} \sin ( \alpha+\varphi)\)

\( \begin{cases} \sin\varphi = \frac{b}{\sqrt{a^2+b^2}} \\ \cos\varphi = \frac{a}{\sqrt{a^2+b^2}} \\ \tan\varphi = \frac{b}{a} \end{cases} \)