必修一 ¶
约 1023 个字 预计阅读时间 3 分钟
基本不等式 ¶
\( \begin{cases} a^2 + b^2 \geq 2ab \\ \frac{(a+b)^2}{4} \geq ab \\ a+b \geq 2\sqrt{ab} \end{cases} \)
“调几算方”¶
调和平均数 \(\geq\) 几何平均数 \(\geq\) 算术平均数 \(\geq\) 平方根平均数
\( \frac{2}{\frac{1}{a}+\frac{1}{b}} \leq \sqrt{ab} \leq \frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}} \)
对数的运算法则 ¶
- 对数乘法法则: \(\log_a(bc) = \log_a b + \log_a c\)
- 对数除法法则: \(\log_a\frac{b}{c} = \log_a b - \log_a c\)
- 对数幂法则: \(\log_a b^c = c \log_a b\)
- 对数换底法则: \(\log_a b = \frac{\log_c b}{\log_c a}\)
推论:¶
- \(\log_a \frac{1}{M} = -\log_a M\)
- \(\log_a \sqrt[p]{M^n} = \frac{n}{p}\log_a M\)
- \(\log_a b = \frac{1}{\log_b a}\)
- \(a^{\log_b c} = c^{\log_b a}\)
三角函数 ¶
\(\sin^2\alpha+\cos^2\alpha=1\)
基础公式 ¶
- \(\sin(\theta + 2k\pi) = \sin \theta\)
- \(\cos(\theta + 2k\pi) = \cos \theta\)
- \(\tan(\theta + k\pi) = \tan \theta\)
其中,\(k \in \mathbb{Z}\)
三角函数诱导公式 ¶
-
第一组 :
- \(\sin(\pi - \theta) = \sin \theta\)
- \(\cos(\pi - \theta) = -\cos \theta\)
- \(\tan(\pi - \theta) = -\tan \theta\)
-
第二组 :
- \(\sin(\pi + \theta) = -\sin \theta\)
- \(\cos(\pi + \theta) = -\cos \theta\)
- \(\tan(\pi + \theta) = \tan \theta\)
-
第三组 :
- \(\sin(2\pi - \theta) = -\sin \theta\)
- \(\cos(2\pi - \theta) = \cos \theta\)
- \(\tan(2\pi - \theta) = -\tan \theta\)
-
第四组 :
- \(\sin(-\theta) = -\sin \theta\)
- \(\cos(-\theta) = \cos \theta\)
- \(\tan(-\theta) = -\tan \theta\)
-
第五组 :
- \(\sin\left(\frac{\pi}{2} - \theta\right) = \cos \theta\)
- \(\cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta\)
- \(\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan \theta}\)
-
第六组 :
- \(\sin\left(\frac{\pi}{2} + \theta\right) = \cos \theta\)
- \(\cos\left(\frac{\pi}{2} + \theta\right) = -\sin \theta\)
- \(\tan\left(\frac{\pi}{2} + \theta\right) = -\frac{1}{\tan \theta}\)
三角函数的性质 ¶
基本三角函数 ¶
| 函数 | 对称轴 | 对称中心 | 单调递增区间 | 单调递减区间 | 奇偶性 | 零点 |
|---|---|---|---|---|---|---|
| \( y = \sin x \) | \( x = k\pi + \frac{\pi}{2} \) | \( (k\pi, 0) \) | \( [2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}] \) | \( [2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}] \) | 奇函数 | \( x = k\pi \) |
| \( y = \cos x \) | \( x = k\pi \) | \( \left(k\pi + \frac{\pi}{2}, 0\right) \) | \( [2k\pi, 2k\pi + \pi] \) | \( [2k\pi + \pi, 2k\pi + 2\pi] \) | 偶函数 | \( x = k\pi + \frac{\pi}{2} \) |
| \( y = \tan x \) | 无 | \( (k\pi, 0) \) | \( \left(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right) \) | 无 | 奇函数 | \( x = k\pi \) |
其中,\( k \in \mathbb{Z} \)
奇偶性 ¶
三角函数形如 \( f(x) = A \sin(\omega x + \varphi) \) 的奇偶性:
- \( f(x) \) 为奇函数 \( \Leftrightarrow \) \( \varphi = k\pi \)
- \( f(x) \) 为偶函数 \( \Leftrightarrow \) \( \varphi = -\frac{\pi}{2} + k\pi \)
其中,\(k \in \mathbb{Z}\)
周期性 ¶
一般地,若函数 \( f(x) \) 的周期为 \(T\),则函数 \( y = f(\omega x) \) 的周期为 \( \frac{T}{|\omega|} \)
特殊地,函数 \( y = A \sin(\omega x + \varphi) \) 或 \( y = A \cos(\omega x + \varphi) \) 的周期 \( T = \frac{2\pi}{|\omega|} \),函数 \( y = A \tan(\omega x + \varphi) \) 的周期 \( T = \frac{\pi}{|\omega|} \)
和差角公式 ¶
- \(\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta\)
- \(\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta\)
- \(\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}\)
和差化积与积化和差公式 ¶
-
两角和(或差)与两角积之间的关系
- \(\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha - \beta)+\sin(\alpha + \beta)]\)
- \(\cos\alpha\sin\beta = \frac{1}{2}[\sin(\alpha - \beta) - \sin(\alpha + \beta)]\)
- \(\cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha - \beta)+\cos(\alpha + \beta)]\)
- \(\sin\alpha\sin\beta = -\frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]\)
-
两角积与两角和(或差)之间的关系
- \(\sin\alpha \pm \sin\beta = 2\sin\frac{\alpha \pm \beta}{2}\cos\frac{\alpha \mp \beta}{2}\)
- \(\cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}\)
- \(\cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}\)
倍角公式和半角公式 ¶
-
倍角公式
- \(\sin 2\alpha = 2\sin\alpha\cos\alpha\)
- \(\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha\)
- \(\tan 2\alpha = \frac{2\tan\alpha}{1 - \tan^2\alpha}\)
-
半角公式
- \(\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1 - \cos\alpha}{2}}\)
- \(\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1 + \cos\alpha}{2}}\)
- \(\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} = \frac{1 - \cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1 + \cos\alpha}\)
降幂公式
- \(\sin^2\alpha = \frac{1 - \cos 2\alpha}{2}\)
- \(\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}\)
- \(\tan^2\alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}\)
万能公式 ¶
- \(\sin2\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha}\)
- \(\cos2\alpha = \frac{1-\tan^2\alpha}{1+\tan^2\alpha}\)
- \(\cos^4\alpha+\sin^4\alpha=\cos2\alpha\)
- \(\cos^4\alpha-\sin^4\alpha=1-\frac{1}{2}\sin^2 2\alpha=\frac{3}{4}+\frac{1}{4}\cos4\alpha\)
辅助角公式 ¶
\(a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2} \sin ( \alpha+\varphi)\)
\( \begin{cases} \sin\varphi = \frac{b}{\sqrt{a^2+b^2}} \\ \cos\varphi = \frac{a}{\sqrt{a^2+b^2}} \\ \tan\varphi = \frac{b}{a} \end{cases} \)